Mechatronic Modeling and Design with Applications in Robotics

Course Outline and Introduction

Course Website:

http://grasplab.ca/modeling.html

Mechatronic Modeling and Design with Applications in Robotics

Course Description

Students who successfilly complete the course should have rellibly demonstrated the a alilyy to:

- Use the basic tools required to design model. analye and control mechatronic systems

A snapshot of the course website

Director of the GRASP Lab @ OntarioTech
Design, development and application of advanced technologies for autonomous systems and processes

- Mechatronics
- Robotics
- Machine vision
- Advanced Control
- Artificial intelligence

Selected Projects in GRASP Lab

- Course Overview and Introduction
- Introduction to Modeling
- Basic Model Elements
- Analytical Modeling
- Graphical Models
- Linear Graph
- Linear Graph Examples
- Frequency Domain Models
- Transfer-Function Linear Graph
- Examples in Applications

Learning Outcomes

- Understand the formal meanings of a dynamic system of multi-physics systems (e.g., mechatronic systems).
- Recognize different types of models (e.g., physical, analytical, computer, experimental) and their importance, usage, comparative advantages and disadvantages.
- Under analytical models, recognize the general and specific pairs of model categories.
- Understand the concepts of through-variables and across-variables and their physical significance, and relationship to state variables.
- Recognize similarities or analogies among the four physical domains: mechanical, electrical, flyid, and thermal (this is the basis of the "unified" approach to modeling).
- In each physical domain, recognize the lumped elements that store energy and that dissipate energy, based on the analogy among different physical domains.
- Model a wide variety of system components in a unified way
- Apply AI and Machine Learning in system modeling and design optimization

Clarence W. de Silva, Mechatronics: A Foundation Course, CRC Press, 2010.
Haoxiang Lang, Eric McCormick and Clarence W. de Silva, Appendix B of Modeling of Dynamic Systems with Engineering Applications

Matlab Toolbox: GitHub Link https://github.com/GRASP-ONTechU/Linear Graph

MECHATRONICS
A Foundation Course

Clarence W. de Silva
(x)ccpess

Three Reference Articles: (downloadable on the course website)

- Research and Development of a Linear Graph-based Matlab Toolbox.
- Automated Multi-domain Engineering Design through Linear Graphs and Genetic Programming.
- Dynamic Modeling and Simulation of a Four-wheel Skid-Steer Mobile Robot using Linear Graphs.

Goals:

$>$ To understand basic modeling of dynamic systems and its procedure
$>$ To formulate realistic modeling/design and possible control problems
$>$ To do analysis and design for the problem using the course material
$>$ To design and analyze of the multi-physics systems in Matlab, and implementation if possible
$>$ Cutting-edge insight into system dynamics
Broon your wision
$>$ Foundation to develop expertise in design prototyping, control, instrumentation, experimentation and performance analysis
$>$ Discussion of system dynamics
$>$ Systematic, unified and integrated manner
$>$ Introduce tools of modeling

Introduction

Introduction to Modeling

- Introduce the subject of modeling, with focus on multi-physics engineering dynamic systems.
- The importance of dynamic modeling in various applications

- The use of models in the design and control
- Common types of models and modeling techniques and their advantages and disadvantages
- The idea of integrated, unified systematic mechatronic modeling colter phecharical cystern $\longrightarrow 1$ electrical

Basic Model Elements

- Re-visit basic elements in mechanical, electrical, fluid and thermal domain
- Introduce two new concepts: across-variables and through-variables
- Discuss similarities across domains
- Re-define basic elements with new categories for energy storage elements, energy dissipation elements and sources.
- Identification of proper and physically meaningful state variable across multiple physics domain domains.

- Formally introduces analytical modeling of dynamic systems -TF (iuput-out put)
- Systematic development of state-space models of engineering systems in fours physical domains (2 physical domain: Mechanical electrical)
- Frequency domain models: Transfer Function (TF) $\underbrace{\frac{\text { output }}{\text { luput }} \text { (s domain) }}_{\text {luput }}$
- A general methods of converting a state-space model into an input-output model
- Indicate the advantages and limitations
- Examples will be discussed

Graphical Modeling Tools

- System block diagram: formulation, simplification and generation of input-output

> model.

- Signal Flow Graph: formulation and calculation $0^{\theta^{x^{-8}}} \quad T F, C(s)=\frac{\text { out }}{\text { wiput }}$

Linear Graph

- Introduce the graphical tool for developing models of dynamic systems
- State-space model formulation of any physics (mechanical, electrical, fluid and thermal) or multi-domain (mixed) systems
- Discuss more advanced method in Linear Graph

Armature Circuit

Frequency-Domain Models

- Mechanical Circuit
electrical
Circuit
- Mechanical and electrical impedance
- Mechanical mobility and its interconnection laws
- Practical applications

per
- Extension of the equivalent circuits (commonly in electrical domain) to other physical domain such as mechanical and fluid domains

- Reduction of linear graph using Thevenin and Norton equivalence
- Two port linear graph elements

AI in Modeling and Design

- Introduce general AI algorithms including NNs, GA and Machine Learning ~~~
- Discuss possible integration of AI in modeling and desigt
- Introduce examples

Reverse
Engineering

Outputs

Artificial Intelligence:
Capable of human-like qualities
arthtisatit

Understanding the system (e.g., human brain)
! The driving force behind the creation/evolution

Modeling and Design Example 1

$$
\begin{aligned}
& \text { O } \underbrace{\left[\begin{array}{cc}
-b / m & -1 / m \\
k & 0
\end{array}\right]} \quad \underbrace{\left[B=f(t) \quad\left[\begin{array}{c}
1 / m \\
0
\end{array}\right]\right.}
\end{aligned}
$$

Modeling and Design Example 2

High frequency

Remove high frequency signal. conserving low frequency signal.

Modeling and Design Example 3

Page 20 of 21

The End!!

